
YourTrump

Smart 
Contract
Audit

auditace.tech

FOR

DATED :  27 Nov 24'



Status Critical High Medium Low Suggestion

Open 0 0 1 1 2

Acknowledged 0 0 0 0 0

Resolved 0 0 0 0 0

Project name –  YourTrump

Date :  27 Nov, 2024

Scope of Audit-  Audit Ace was consulted to
conduct the smart contract audit of the solidity
source codes. 

Audit Status: Passed

auditace.tech

Issues Found

AUDIT SUMMARY



Tools:

1- Manual Review:
A line by line code review has been performed by
audit ace team.

2-  BSC Test Network: All tests were conducted on
the BSC Test network, and each test has a
corresponding transaction attached to it .  These
tests can be found in the "Functional Tests" section
of the report.

3- Slither :
The code has undergone static analysis using
Slither.

Testnet version:
The tests were performed using the contract deployed
on the BSC Testnet,  which can be found at the
following address:
https://sepolia.etherscan.io/address/0x1bc8b8432e727
38f51f898e847b425d108c77fae#code

auditace.tech

USED TOOLS



Token Address: -

Name:  YourTrump

Symbol:  -

Decimals: -

Network: -

Token Type: ERC-20

Owner: -

Deployer:  --

Token Supply: -

Checksum: Ee052c616934aeb47e6039f76b20d213

Testnet:
https://sepolia.etherscan.io/address/0x1bc8b8432e72738f51f
898e847b425d108c77fae#code

auditace.tech

Token Information

https://sepolia.etherscan.io/address/0x1bc8b8432e72738f51f898e847b425d108c77fae#code
https://sepolia.etherscan.io/address/0x1bc8b8432e72738f51f898e847b425d108c77fae#code


auditace.tech

TOKEN OVERVIEW

Buy Fee: 0-0%

Sell Fee: 0-0%

Transfer Fee:  0-0%

Fee Privilege: Owner

Ownership: Owned

Minting: None

Max Tx: No

Blacklist:  No

Other Privileges:



AUDIT METHODOLOGY

auditace.tech

The auditing process will  follow a routine as special
considerations by Auditace:

Review of the specifications, sources, and instructions
provided to Auditace to make sure the contract logic
meets the intentions of the client without exposing
the user’s funds to risk.

Manual review of the entire codebase by our experts,
which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

Specification comparison is the process of checking
whether the code does what the specifications,
sources, and instructions provided to Auditace
describe.

Test coverage analysis determines whether the test
cases are covering the code and how much code
isexercised when we run the test cases.

Symbolic execution is analysing a program to
determine what inputs cause each part of a program
to execute.

Reviewing the codebase to improve maintainability,
security,  and control based on the established
industry and academic practices.



auditace.tech

VULNERABILITY CHECKLIST

Return values of low-level calls

Private modifier

Multiple Sends

Using Suicide

Gas Limitand Loops

Address hardcoded

Exception Disorder

Using inline assembly

Divide before multiply

Missing Zero Address Validation

Compiler version not fixed

Gasless Send

Using block.timestamp

Re-entrancy

Tautology or contradiction

Timestamp Dependence

Revert/require functions

Use of tx.origin

Integer overflow/underflow

Dangerous strict equalities

Using SHA3

Using throw



auditace.tech

POINTS TO NOTE

The owner can update user round data.

The owner can set distribution wallets.

The owner can set the token price.

The owner can start and end round.

The owner can withdraw ETH/TOKENS/USDT

The owner can set Token/USDT/PriceFeed.



auditace.tech

STATIC ANALYSIS



auditace.tech

STATIC ANALYSIS

Result => A static analysis of contract’s source code has

been performed using slither,  

No major issues were found in the output



auditace.tech

FUNCTIONAL TESTING

1- Set Distribution Wallets (passed):

https://sepolia.etherscan.io/tx/0x20cf6a87b747b3c8f5c9f8b7898db991f154

d078f0d49e064262367ba7286db8

https://sepolia.etherscan.io/tx/0x20cf6a87b747b3c8f5c9f8b7898db991f154d078f0d49e064262367ba7286db8
https://sepolia.etherscan.io/tx/0x20cf6a87b747b3c8f5c9f8b7898db991f154d078f0d49e064262367ba7286db8


CLASSIFICATION OF RISK

auditace.tech

Severity Description

◆  Critical

◆  High-Risk

◆  Medium-Risk

◆  Low-Risk

◆  Gas Optimization

/Suggestion

 These vulnerabilities could be exploited easily and can lead to
asset loss, data loss, asset,  or data manipulation. They should be

fixed right away.
A vulnerability that affects the desired outcome when using a

contract,  or provides the opportunity to use a contract in an
unintended way.

A vulnerability that could affect the desired outcome of executing
the contract in a specific scenario.

A vulnerability that does not have a significant impact on possible
scenarios for the use of the contract and is probably subjective.

◆  Critical

◆  High-Risk

◆  Medium-Risk

◆  Low-Risk

◆  Gas Optimization /

Suggestions

Findings

Severity Found

0

0

1

1

2

A vulnerability that has an informational character but is not

affecting any of the code.



MANUAL TESTING

auditace.tech

Centralization – Missing Require Check.
Severity:  Medium
Function: setDistributionWallets
Status: Open

Overview:
The owner can set any arbitrary address excluding zero address as this is not
recommended because if the owner will  set the address to the contract
address, then the Eth will  not be sent to that address and the transaction
will  fail  and this will  lead to a potential honeypot in the contract.

function setDistributionWallets(address[]  memory wallets)     //@audit
//Missing require check
       external
       onlyOwner
{
       require(wallets.length > 0,  "Must provide at least one wallet");

       delete distributionWallets;

       for (uint256 i  = 0;  i  < wallets.length; i++) {
distributionWallets.push(wallets[i]) ;
       }

       numberOfWalletsToDistribute = wallets.length;
}

Suggestion: It  is recommended that the address should not be able to set as
a contract address.



MANUAL TESTING

auditace.tech

Centralization – Missing Events
Severity:  Low
Subject:  Missing Events
Status: Open

Overview:
They serve as a mechanism for emitting and recording data onto the
blockchain, making it transparent and easily accessible.

function setDistributionWallets(address[]  memory wallets)     //@audit
//Missing require check
       external
       onlyOwner
{
       require(wallets.length > 0,  "Must provide at least one wallet");

       delete distributionWallets;

       for (uint256 i  = 0;  i  < wallets.length; i++) {
distributionWallets.push(wallets[i]) ;
       }

       numberOfWalletsToDistribute = wallets.length;
}
 function setTokenPrice(uint256 _newPrice) external onlyOwner {
       tokenPrice = _newPrice;
}

//  End a presale round
function endRound(Rounds _round) external onlyOwner {
       require(roundStatus[_round] == false, "Round already ended");
       roundStatus[_round] = true;
}



MANUAL TESTING

auditace.tech

//  Start a presale round
function startRound(Rounds _round) external onlyOwner {
       require(roundStatus[_round] == true, "Round is still  active");
       roundStatus[_round] = false;
}

 function setToken(address _token) external onlyOwner {
       require(_token != address(0),  "Invalid address");
       token = IToken(_token);
}

//  Function to set the USDT address
function setUSDT(address _usdt) external onlyOwner {
       require(_usdt != address(0),  "Invalid address");
       USDT = IToken(_usdt);
}

//  Function to set the price feed address
function setPriceFeed(address _priceFeed) external onlyOwner {
       require(_priceFeed != address(0),  "Invalid address");
       priceFeedeth = AggregatorV3Interface(_priceFeed);
}
}

 function withdrawETH() external onlyOwner {
payable(owner()) .transfer(address(this) .balance);
}

//  Withdraw USDT by owner
function withdrawUSDT() external onlyOwner {
       uint256 contractBalance = USDT.balanceOf(address(this)) ;
       require(contractBalance > 0,  "No USDT balance to withdraw");
       require(
           USDT.transfer(owner() ,  contractBalance),
           "USDT withdrawal failed"
       ) ;
}



MANUAL TESTING

auditace.tech

//  Emergency token recovery function
function withdrawTokens(address _tokenAddress, uint256 _amount)
       external
       onlyOwner
{
       uint256 contractBalance =
IToken(_tokenAddress).balanceOf(address(this)) ;
       require(contractBalance >= _amount,  "Insufficient token balance");
       require(
IToken(_tokenAddress).transfer(owner() ,  _amount),
           "Token transfer failed"
       ) ;
}



MANUAL TESTING

auditace.tech

Optimization
Severity:  Informational
Subject:  Floating Pragma.
Status: Open

Overview:
It  is considered best practice to pick one compiler version and stick
with it .  With a floating pragma, contracts may accidentally be deployed
using an outdated.

pragma solidity ^0.8.20;

Suggestion:
Adding the latest constant version of solidity is recommended, as this
prevents the unintentional deployment of a contract with an outdated
compiler that contains unresolved bugs.



MANUAL TESTING

auditace.tech

Optimization
Severity:  Optimization
Subject:  Remove unused code.
Status: Open

Overview:
Unused variables are allowed in Solidity,  and they do. not pose a direct
security issue. It  is the best practice. though to avoid them.

 function _msgData()  internal view virtual returns (bytes calldata) {
return msg.data;
   }

function _contextSuffixLength()  internal view virtual returns (uint256) {
return 0;
   }



DISCLAIMER

auditace.tech

All the content provided in this document is for general
information only and should not be used as financial

advice or a reason to buy any investment.  Team provides
no guarantees against the sale of team tokens or the

removal of l iquidity by the project audited in this
document.  Always Do your own research and protect

yourselves from being scammed. The Auditace team has
audited this project for general    information and only
expresses their opinion based on similar projects and

checks from popular diagnostic tools.   Under no
circumstances did Auditace receive a payment to  

manipulate those results or change the awarding badge
that we will  be adding in our website.  Always Do your own

research and protect yourselves from scams.  This
document should not be presented as a reason to buy or

not buy any particular token. The Auditace team disclaims
any liability for the resulting losses.



ABOUT AUDITACE

auditace.tech

We specializes in providing thorough and reliable
audits for Web3 projects. With a team of experienced

professionals, we use cutting-edge technology and
rigorous methodologies to evaluate the security and

integrity of blockchain systems. We are committed to
helping our clients ensure the safety and transparency

of their digital assets and transactions. 

https://auditace.tech/

https://t.me/Audit_Ace

https://twitter.com/auditace_

https://github.com/Audit-Ace


